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ABSTRACT

A queueing model is considered where customers arriving
in a Poisson stream are given the choice of either joining the

waiting line or - by declining to do so - of foregoing the

benefits accruing through service. The decision of each cus-

tomer is based on his concrete benefit-cost analysis.,"ixce•

his service time is constant, and exhaustive information as to

the actual state of the system is available, both of the alter-

natives presented to the individual customer are completely

deterministic and his decision is not reached under uncertainty

or risk. The cost structure envisaged as well as additional

assumptions give rise to a queueing model with limited waiting
room apparently not previously considered in the literatum.

After detailed analysis of the model and blending with the cost

structure it is shown that the criterion for self-optimization
of the customers will not bring about social optimization, the

latter being defined as the maximally feasible expected net

gain per unit time accruing to the totality of customers. A
number of simple and comprehensive optimization equations are
derived. By marginal analysis the correctness of the simple

equations is verified and their applicability is extended to

models possessing more general character.
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IN WAITING LINES

I. Adler and P. Naor

I Introduction

The following problem has been discussed in a recent coumunication

(Naor (1969)): Customers arrive in a Poisson stream at a service station;

each of them is made aware of the current length of the queue, of the monetary

reward he will attain through completion of service, and of his own waiting

cost per unit time. Any customer is given the choice between two alternatives:

joining the queue or balking the opportunity of doing so. It is desired to

reach a rational decision between these alternatives. What is the proper

criteriqn on which to base the decision? It was shown in that study that, if

each customer reaches his conclusion on the basis of his narrow self-interest,

a reasonable social objective function representing the public good will not be

optimized. Rather it was shown that individuals acting solely on the basis of

their self-interest will impose more congestion on the system than is socially

desirable.

The particular model employed in the above study envisaged service time

to be an exponentially distributed random variable. Hence, in such a situation

the individual customer - on pursuing his self-interest - reaches his conclusiorn

under risk; that is, he realizes that the random variable "future queueing time"

a priori possesses an Erlang distribution (with known parameters) and in the

comparison of outcomes of his possible decisions he makes use of expected

queueing costs (among other items). Now in any actual realization it may turn

ar



2~

out, on hindsight, that the customer could have been better off, had he decided

differently. One is tempted to consider the possibility that these a posteriori

erroneous decisions are somehow associated with the contradiction between social

optimization and self-optimization.

One purpose of the present investigation is to show that such is not the

case. In this study a model is presented such that the individual customer is

faced with a decision problem under certainty and yet his rational criterion of

choice (under the specification of self-optimization) between the alternatives

will not bring about sodial optimality. Again, as in the previous case, at

some times the Individual customer will be prepared to join the waiting line

whereas overall considerations of optimality deem this prohibitive. It is the

general rule that self-optimization tends to over-congest the system as com-

pared with social optimization.

In the previous study algebra only was employed in the derivation of the

various quantities of interest. The exponential distribution assumption with

respect to the service time generated a situation where the state space was

capable of description by a single integer only and the number of possible states

was finite, This is advantageous if one's primary interest is to demonstrate

the contradiction between self-optimization and social optimization. However,

the case of exponential service distribution does not lend itself to convenient

generalizations if one intends tc investigate situations where the state space

is infinite and comprises all reai numbers in the interval (0,v) (v > 1). In

order to make progress toward such cases it is convenient to start with fixed

and equal service ti.mes. The feasibility of attaining the higher degree of

generality through the use of fixed (rather than exponentially distributed)

service times contributes to the rationale underlying the approach presently

taken in this communication. Finally, it is useful pointing out that the "pure"

queueing problem (i,e. the stochastic model only, without the assumed cost

structure) proposed here, to wit, the employment of a bounded and "non-integral"

waiting room, seems not to have been dceat with in the literature. It is quite

feasible that such models are of use in various applications other than those

envisaged heie. Thus, for instance, the mixing problem in chemical engineering

stated and solved by Shinnar (1967) in queueing terms may be generalized on the

lines of the pure stoc.hastic model developed in the present paper.
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II. Model Characteristics and Cost Structure

In the present Section we shall state the precise assumptions relating

to the stochastic model as well as to cost structure. However, before going

into the specifics it is useful to observe and state two distinctive qualities

of the general setting in which the present model is situated.

1. Since the leitmotif of this study is contrasting two optimization

procedures it is essential to define two distinct objective functions,

one related to the aspirations of (non-cooperating) decision making

individuals, the other concerned with the public good. There is no

(mental) difficulty regarding the first position; the individual

customer simply seeks to maximize his own net income. For a reason-,

able objective function to describe the second position one has to

introduce a set of specific assumptions circumscribing the structure

of public good. In the present communication we shall follow the

mode employed in the preceding study (Naor (1969)) and choose the

average net income accruing to the totality of customers in unit time

as the objective function to be maximized. This choise of an object-

ive function presupposes one of the following situqtions to prevail:

(i) There exists essentially only one genuine (overall)optimizer

and individual customers are subcontractors of decision making,

as it were, who are obliged by administrative fiep to reach their

conclusions on the basis of rules prescribed by the overall

optimizer.

(ii) Alternatively, a situation is envisaged where net gains of

customers are considered to be comparative and additive, and by

couuon agreement may be redistributed. Cooperation between

customers - displayed by some through refraining from joining

the queue apparently against their own best interests - will

produce additional net income in unit time. This will be

"redistributed and, eventually, the average net profit accruing

to each customer will exceed that of self-optimizing customers

within a framework of non-cooperation. A feasible instrument1'_ __ _ _

. 1.
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of control under the present circumstances is the imposition

of a toll which, if wisely determined, will produce both social

optimality and a reserve stock of money to be used for redistri-

bution. Proper identification of a set of circumstances under

which an overall objective function is deemed to exist is

essential in an analysis of the present character.

2. In most queueing models with a built-in optimization procedure
(e.g. through the agency of priority service rules or through control

of the service intensity) it is assumed that all arriving customers -

sooner or later - are going to be serviced. The feasible control

actions (if such are envisaged at all) in most queueing models do

not typically include the peremptory non-admission of a customer
based on a cost-benefit analysis. While a number of models were

developed which included the element of potential non-service - e.g.
the balking and reneging models - this contingency was presented in

probability terms only; non-admission was never considered to be
an instrument of economic control. In the balking and reneging

models the probability of not joining (and of leaving) the queue is

associated with the customer's impatience - a psychological criterion
rather than an economic one. Diverting the customer from the queue

without rendition of any service is then a feasible course of action
in the model area under consideration. To obviate difficulties -

mostly of psychological origin - which stem from the feeling that

customers must get some sort of service eventually, we may re-

circumscribe the present framework in seemingly different terms:

Customers may be served in two alternative, distinct modes. There

is the standard mode of service which can always be relied upon and

which is not associated with any queue of customers; it serves as

reference point against which any other mode of service (concretely

just one) may be compared. The non-standard mode of service is

advantageous in monetary terms as compared with the standard mode
if the waiting line of customers, ahead of the new arrival, is suf-

ficiently small, If we describe the system in such terms - advantage-

ous non-standard service with potential queue in front of the statik,



compared with generally dise'vantageous but queue-free standard

s, vice - we .-eally dea, with a model completely equivalent to the

previous situation. To sum up, for a discussion of self-optimiza-

tion versus social optimization to make sense non-admission of

customers to the service station must be a feasible control action.

Customers diverted from the station may be thought of either as not

receiving service at all or as being rendered a standard type of

service for which it is never necessary to queue up.

After these observations and the setting of the general framework the

specifics of the stochastic model and of the cost structure may be stated in

the following terms:

(i) A stationary Poisson stream of customers - with parameter A -

arrives at a single service station.

(ii) The service time necessary to satisfy and dispatch a customer is

a constant T; all service times are equal.

(iii) On successful compietion of service, the customer is endowed with

a reward R (expressible in monetary units). All customer

rewards are equal.

(iv) The cost to a customer for staying in a queue (i.e. for queueing)

is C monetary units in unit time. All customer costs are equal.

(v) The newly arrived customer is required to choose one of two

alternatives: either (a) he joins the queue, incurs the losses

associated with spending some of his time in it, and finally

obtains the reward; or (b) he refuses to join the queue - an action

which does not bring about any gain or loss. The choice is made

by the customer on comparing the net gains associated with each of

these alternatives. Two modes of decision are examined: In one

mode customers are assumed to act solely in their self-interest;

it is sufficient for the net gaiii to the individual to be non-

negative in order to induce him to join the queue. In the other

decision mode each individual acts on behalf of the totality of

customers and he assumes every customer to act in the same spirit;

this customer seeks a decision criterion by which average net income

in unit time is maximized.
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Model assumptiol (i), (iii) and (iv) are identical with those appearing

in the previous study. Assumption (v) is more inclusively formulated than its

original counterpart in order to render equal status a-priori in the derivations

to be carried out to both self-optimization and social optimization.

Assumption (ii) is radically different from its predecessor: Fixed -

rather than Pxponentially distributed - service times are envisaged and this

causes the individual customer to be placed in a deterministic decision situa-

tion. We note, furthermore, that this assumption (in conjunction with the

others, of course) gives rise to a stochastic model which is interesting per se

and may be put to use in other contexts as well. The mathematical techniques

which have to be employed under the present assumption (ii) are of a different

quality than those useful (and sufficient) if the assumption of exponentially

distributed service times is considered valid. Finally, it will be shown that

several of the results to be attained here by employing assumption (ii) serve

as a more advantageous point of departure for some generalization than can be

expected from the original model.

I
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III. Finite and Nonintegral Queueing Capacity

What is the decision criterion of the individual customer seeking self-

optimization? Clearly he reaches his decision under conditions of certainty.

Upon his arrival he views the queue ahead of him which is made up of two parts:

k customers are in the waiting line and one is in service. The outstanding

.ervice time of the latter is observed to be T (0 < T < T). If he chooses to

join the queue then - assuming throughout the discipline "first-come-first-

served" - his total queueing time, from the instant of his arrival and joining

to the instant of his service completion, will equal kT + T + T (the third

term being the customer's own service time). Since the decision is based on the

customer's self-interest it will be considered correct if the cost of queueing

does not exceed the reward. That is if, and only if, the (weak) inequality

R - Cjlk÷I)T + -] > 0 (I)

is satisfied the newly arrived customer should join the queue.

It will be sometimes advantageous to view this from a slightly different

angle. Let the occupancy or the state K of the system at any arbitrary

instant be defined as the ratio of the (future) queueing time of the last

customer in the line and the se.,vice time T.

kT -L~ k - (2)

Furthermore, let a dimension'ess inde, be defined as

R (3)
s CT

Inequality 'l) is transformed in,.o

K s (4)-- S
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which is interpreted in the following manner: The ±ncoming new customer

observes the state K of the system; if it does not exceed the value of

V - I the customer joins the queue, otherwise the customer forgoes queueing

as well as service. Now all customers act by the same criterion; hence K

can take on values in the interval [O,v s1. The maximum value Vs will be

realized under the following circumstances: an incoming customer encounters

the system in a state s- 1, the maximum value at which the system is still

accessible to new arrivals and - by the act of joining - he transforms the

system into state v o Whenever the system is in a state within the interval

(v s-l,vs] it is said to be inaccessible to new customers.

We note that the rule prescribing accessibility makes sense only if the

inequality

S> (5)

pertains. In physical terms this means that the reward to be collected by the

customer at the completion of his service must not fall short of the cost of

time spent in service. If inequality (5) does not apply the proper policy is

to refuse access to all customers and (possibly) disband the service station

altogether.

The decision mode associated with the individual customer's self-interest

has then given rise to a queueing model with Poisson arrivals, constant service

cimes and finite queueing capacity (i.e. limited waiting room). Now the present

model is different fiom those that have appeared in the literature on queueing

cheory in the fotlowing respect: In the typical model where finite queueing

:apacity makes its appearance the number of potentially available waiting

spaces (the "size" of the waiting room) is assumed to be integral; occupancy

too is considered to be an integer and changes in jumps whenever a customer

departs or joins the queue. In the present model the service process chanfes

(decreases) the occupancy continuously and uniformly, the total capacity is a

real positive number (and not necessarily an integer) and arrivals - folleyed

by absorption into the queue - bring about discrete changes. It is not

difficult to verify that the specialization of capacity values to integers
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(without imposing any further conditions) suffices to generate what was named

before the "typical model with finite queueing capacity". We observe that, if

the assumption of exponentially distributed service times replaces the constant

service times postulate, the "typical model" cannot be transformed into a

generalized model; both capacity and actual occupancy are, of necessity,

integers in this case.

Occupancy is essentially equivalent to the concept of virtual waiting

time (or occupation time as it is termed sometimes) introduced by Takacs;

indeed, it is the ratio of occupation time to service time.

The mode of decision seeking social optimality will give rise to a

queueing model of identical structure (though with one different parameter).

Of course, unlike the self-optimizer, the social optimizer is not faced with

a decision problem under conditions of certainty. Indeed he will have to take

into account a somewhat probabilistic future, to wit, the Poisson stream of

customers who will arrive at the service station. Now by the very quality of

the homogeneous voisson process the total useful information is contained in

the knowledge of the arrival intensity (a parameter not relevant for the self-

optimizer's decision). Hence the social optimizer, too, will at the instant

of a customer's arrival, exercise control by observing the occupancy K and

make the new arrival join if, acid only if, the criterion

S - 1 (6)

is satisfied where i, is a function of both v and the traffic intensity.

Adherence to such a rule will generate a system possessing a structure iden-

tical with that discussed befcte: Poisson arrivals, constant service times,

finite and nonintegral queueing capacity.

It appears then worthwhile to delve deeper into the analysis of such a

system. This will be done in the sections which follow.

L_ __
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IV. Some Basic Relations

We have then: a Poisson stream of incoming customers possessing

arrival intensity A ; a single service station; each customer requires

exactly T time units for the completion of his service; there is limited

waiting room and the occupancy K can never exceed the constant* v > 1;

access to the waiting line is granted to a new customer only if the occupancy

does not exceed v - 1.

The traffic intensity p is defined as

P = T (7)

We note that under the pre~ent model assumptions it is not necessary to put

restrictions on the permissible values of p in order to obtain steady state

conditions.

The state of the system at an arbitrary instant is specified either by

the occupancy K or by the pair (i,t) where i is the number of customers

in the queue (i.e. inclusive of the customer in service) and t is the time

which has already been devoted to the customer in service

K K - + -K- if K> 0

1 0 if K =

T T- if K >0' (9)
0 if KU 0

For the specific purposes of optimization - to be discussed in a
later section - the constant v will be assigned a subscript,

e.g. vs or j,-.

'1I
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We are concerned with the steady state regime of our system. Let p0
be defined as the probability of the service station being idle whereas

Pi(t) (I < i < [v] + 1, 0 < t < T) represents the probability density*
pertaining to the elapsed service time t and the queue i.

Now consider the density pi(t) and, in particular, the change that

is taking place Api(t) during a very small time interval At. Such change

is associated with the difference of jump probabilities into. and out of, the

state (i,t), that is pi_l (t)At - pi(t)xAt.

We define

n = [v] (10)

9 = T(v-n) (11)

take cognizance of the feasible values of i and of 9, and apply the idea

of associating the density change within a small time duration with the differ-
ence of jump probabilities. The set of differential equations, pertaining to

the present queueing model, is derived

d-p = •Ptt (0 < t < T) (12a)

-T- - 'X[Pi-I(t) " Pi~t) (0<_t<T, l<i<n) (12b)

dpn(t)
a - Pn-l(t) (0 < t <_T-9) (12c)

dPn(t)
T =X[Pn-l(t) - Pn(t)] (T- • n) (12b)

dPn÷ 1
S••n~)(T-9 < t < T) (12e)

* This is, of course, a joint density - it should be noted that one random variable
(elapsed service time) is continuous while the other (queue size) is discrete
The representation in such terms, pi(t), possesses some advantage - for our
present purpose - over a "presentation by a density associated with a single
random variable, e.g. #(K). Potential concentrations and discontinuities (and,
in fact, there is a concentration at the point K-0 and a discontinuity in
s(K) at the point K-•1) will be exhibited in a more natural way on utilizing

the present notation.
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Boundary conditions are established on examination of the changes that

take place at times t - 0 and t 9

PO• A Pl[T) (13a)

p1(0) P + P2(T) (13b)

Pi(O) pi 1 (T) (1 < i < n) (13c)

Pn÷I(T-Q) = 0 (13d)

The probability of having i (> 0) customers in the queue is given

by

T
f f Pi(t)dt 1 < i <n (14a)
0
T

Pn+l f- Pn+I (t)dt (14b)
T-9

Obviously these probabilities - together with p0  - obey

n+lI Pi I (s
iz0

The probability, p' ' of the service station being closed to incoming

traffic may be evaluated as

T-O T

Pc f PnCt)dt fT0 Pn+1(t)dt (16)

The busy fraction - which in the present type of model is not identical

with the traffic intensity p - is equal to

b a 1 - p0  (17)

During the busy period the rate of discharge of customers from the service

station equals T. Hence the average rate of discharge - i.e. the expected
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number of customers leaving the service station in unit time is then evaluated

as the product (l-Pc)T-1. Now the average number of customers admitted to

the service station in unit time is given by X(l-pc). Within a steady state

regime these two quantities must be equal. Hence after some rearrangement we

obtain

p = XT 0 (18)

If, as is assumed here, service times are fixed and equal then, by

first principles, the average number of times a state t (disregarding i)

is realized in unit time cannot depend on t. Hence the solutions pi(t) must
obey the following equation

n or n+l -1
n I I Pi(t) = (-po )T = X(l-Pc) (19)
i=l 10

It is apparent that the idle fraction p0  plays an important role in

the central formulas of the model. This quantity is a function of the para-

meters v and p . Depending on the circumstances we may desire to use the

obvious notation po(v,p) or p(v).

Application of (rather lengthy) standard solution methods on the set

(12) as well as combination with other equations of this Section yields

p (V,p) ( (1 + n (-l)jl [(n-j)XT+J] J-l 101(n-j)XT+X)}_ 1

n
a J1 + 1 (-4) i [(0ý PJ71 (v-j)-p )-I (20)jul (j-l)! p

If n exceeds the value 1 (the alternative case is elementary) it may

be shown after some further manipulation that the following result is attained

S= Po(Y~p)(ep -1) if n > 1 (21a)

Pi(V'0) -Po( G ) [e ip 4 i-I-)O Ui-jpj.fal l

jul ( - ]

for 1 < i < n (21b)

______________________________________
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Set (21) is rather interesting; formally the probabilities are given

by equations which are identical with those relating to the analogous model

with unlipited waiting room. These were already evaluated in the early days

of queueing theory - indeed they can be found in Fry's (1928) textbook.

However, beyond the formal identity we must take note that the two positions

diverge in three aspects at least: a) The probability p0 which appears as

a multiplier in 121) is different in the two cases. b) The traffic intensity

P must fall short of the value 1 in the infinite waiting room model; in the

limited waiting room model this restriction is removed. c) In the infinite

waiting room model the validity of (21b) ranges over all feasible values of i;

in the present case the range of applicability of (21b) is limited to those

values of i for which the station is never closed. Beyond the intrinsic

usefulness of the set (211 we are made to realize - through its presentation -

that basic formulas may be stable in some sense even though some model assuqp-

tions are modified - slightly or otherwise. The change brought about by the

model modification manifests itself only in the variation of a key quantity,

eg,. in the present case: p0.

It may be desirable to examine the solution of the set {12) of differ-

ential equations in somewhat sharper detail. The following is a representation

of pi(t).

Let two functions zi(t) and Zi(t) be recursively defined as

ziCt) u eXTzi ~(0) + X[Zi.l(t) - Zi.l(T)] i • 2 (22)

t
Z.Ct) = f zi(t')dt' i > 2 (23)

0

and let the "starting function z 2 (t)'" be equal to

z 2 (t) e XT - [X(T-t) + 1] (24)

The solution pi(t) of the set (12} is then given by

PO p) 0 e (T-t) (25a)

Pi(t) p eT zi(t) (2Mb)

-~ail"
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for all i and t in (1 < i • n, 0 < t < T) which is feasible for v > 2

and for i and t in (ion, T-0 < t < T) in which case v may take on any

value exceeding 1. The restrictions on i,t and v enumerated above may be

physically interpreted as relating the set (251 to precisely those states in

which the service station is a) busy, and b) accessible. The proof of (25}

is inductive and rather lengthy; it will not be presented here.

Finally, in this Section we put forward* an equation representing the

average queue size, q(v,p), in its dependence on v and p

[(n~)•T (nl-1)TA n C n -j ) T÷•,x] -q(vp) n-Po (vp){e ()l.n-X) I (÷ e
j=2 L-1

[(-jXTxa '-l + -~- ~-jX~o -

(C-l))

In equation (26) sums are defined to equal zero if the lower value of
1

the sumiation index exceeds the upper one, e.g. j= ) a 0. Hence the

queue formula (26) is valid for all values of v > I.

Here again no proof is furnished in the paper; we wish to state that the
derivation of (26) is burdensome and apparently manipulative skill rather
than depth is required.
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V. Optimization

The derivation of a strategy for self-optimization is rather elementary.

"The self-optimizing customer is aware of the quantities R, C and T. He utilizes

relation (3) to compute vs. Upon arrival at the service station he observes

the actual occupancy K. If inequality (4) is observed he reaches an affirma-

tive decision to join. The decision is negative in the alternative case.

The impact of this strategy on the "society" of customers is that average

gross gains ensue at the rate RT- (l-p ) in unit time; the resulting conges-
tion incurs an average cost of Cq. Hence the average net gain, P, accruing to

customers in unit time is given by

P a RT-1 (-po) -Cq (27)

The quantities p0  and q in (27) are computed through the use of

equations (20) and (26), the arguments p and v in these equations are the

observed traffic intensity AT and the chosen strategy vs, respectively.

Next we consider social optimization. Our point of departure is equa-

tion (27) and it is presently assumed that p0  and q are functions of P

(an observed datum) and of a v whose optimal value, ve, will have to be

determined.

Now G is a continuous (and possibly unimodal) function of v and hence

the technique of optimization that suggests itself is differentiation. After

surveying the structure of p0  and of q one is prove to think that, prima

facie, differentiation would be a formidable task - technically speaking. In

order to obviate the technical difficulties we proceed as follows:

Two quantities, N and D, are defined as

(%-)n [j-1 L ~vjoL
N e (Vl)Cl+np-vp)* I (v-I) - •l P,

j=2 l - {t-1) 1

(1)i'l [vL-J)4 - (l+np-vp)]) (28)

n

D 1 + n (1)-1l [v-J)P J-1 Pe(v'J)p (29)
jul 

v--1) 1
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Using this notation we may write

1o (30)
D

N
q n N (31)

The derivatives of N and D (with respect to 9) ý,•c ,lushly related

dN "K(O,n) (32)

and

dDN TK::On) (33)

where the function K(9,n) is defined as

K(0,n) a 2 e (n-1)p+,kg n (-)j-1 2 njPX (n-j)p+X0]) -1
j=2 0j-01)

+[(n-j)p+-0J -2 (34)
+ j-2 I

Again in (34) the summation is defined to yield zero if the lower value of

the index exceeds the upper one. Hence, K(Q,n) is defined over all feasible

values of the arguments n and 0, It is not difficult to verify that it never

cakes on negative values.

We obtain the derivative, with respect to 9, of the net profit functio,)

(n is held constant, of course)

d R(l-P°) d R R CN0 - Cq] dQ rD D-

K(9,n) [R-C(D-+NT) K(Q,n) C(9+T

"D L D [g -C(W+J-D D

p V C q_ D (povsV+q) (35)

D 0 D= 0_ s. . . . . .. .....



- 18 -

The quantity

DO
D(p s -V+q) v O -" N (36)

is a uniformly decreasing function of 9 since its derivative with respect to

9 is made to equal

Do NT D 9 dD T dN D (37)

dO ;F T (a-9 + ) CT-

on utilizing equations (32) and (33).

Now for sufficiently small . expression (36) can oe made positive

(given that v. > 1) and for sufficiently large v we can always make it

negative. As all other factors on the right hand side of (35) are positive,

we deduce that the function dG possesses exactly one zero at that value of
the argument (v or 9) at which the function vsp° - v + q vanishes. Hence,

V 09the value which brings about social optimality, may be obtained from

VsPo(vo a) - Vo + q(vo'p) = 0 . (38)

Equation (38) is of both theoretical and practical interest. We note

that the problem was originally set in terms ';f obtaining the derivative (with

respect to 9) of the net gain f:in._ -1. The differentiation would have to be

carried out within strips of constant n . a change in n causes 9 to

.ump between its twc extreme feasible values, 0 and T. The analysis under-

taken and, in particular, the devict .t-ixzed generated optimization equation

(38) in which dependence on 9 is suppressed and a simple formal structure is

attained.

Formula (38) is also a convenient starting point for numerical work.

As formulated in this study the determination of vs precedes that of vo,

hence v turns out to be an implicit (and not particularly convenient) func-0

tion of V5 and P To set up a table of numerical values one would start

with given v and P and seek the appropriate value of v . This is analogouso s
to the approach undertaken in the previous study. The numerical computation
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of vs as a function of v0  and p is straightforward and presents no

extraordinary practical difficulties. Furthermore, the physical interpretation

of such a reformulation of (38) (vs =[Vo-q(vo0 O1 /P I (Vop) ) is not farfetched:

For a queueing model of the type described here the traffic intensity P and

the socially optimal capacity v0  are given; it is desired to find that capa-

city, V , which self-optimizing customers will generate, if no regulation of

:raffic - financial or administrative - is imposed.

What is the optimal (maximal) rate of net gain G ? To derive this0

we return to (27) and assume that the optimal v , i.e. vo, has been made the

-:riterion of decision. We have then

R(l-p OCv ,))
Go = T o

= C[vs(l-P o(Vop)) - qCvop)] =

= C[VS-V - ( VsPo (V ,Op)-vo +q)] = C(vs-vO) (39)

Equation (39) is both simple and informative:

First it makes one realize in immediate terms that the inequalit)

v > V (40)S - 0

must hold (where equality is realized if, and only if, v. = l (p > 0)).

rhis, of course, is one if the objectives of the present study.

Secondly, we observe that the right hand side of (39) is very closely

related to the regulatory toll that should be imposed on incoming customers in

order to maximize average (social) net gain in unit time. Indeed, the optimal

toll*, Sop is obviously given by

So a CT(v s-V 0 ) (41)

Unlike the case discussed in the previous study (where an optimal tool was
one taken from a range of values) there is exactly one optimal tool value
which maximizes (social) net gain in unit time.
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We have then the interesting (and, on first sight, slightly strange) result

that the optimal toll to be imposed on the customer is identical with the

average optimal gain accumulating during one service period.

S = G T (42)

Thirdly, one is induced to pose the question whether the simple formulas

attained here - such as (38), (39) and (41) - are amenable to simple physical

interpretations and, possibly, to further generalizations. In the following

we present the marginal analysis pertaining to social optimization. We shall

show that it leads to the very same equations possessing elementary structure.

It is the social optimizer's function to select an indifference capacity

1"o-l) possessing the following characteristic: A customer who arrives at an

instant - t a 0, say - at which the system possesses the occupancy K - Vo-

will generate identical gains to society either by joining the queue or by

declining to do so. Neither alternative is preferable to the other from the

viewpoint of public good. We note that if the customer joins the queue the

identical state v 0- which would instantaneously prevail were he to balk will

be regenerated* in exactly T time units (with probability 1). During this

time access to the service station is blocked for new customers who (possibly)

arrive within that interval. Exactly one customer will be discharged from the

service station during the blocked period - at time (v o-n )T. The queue size

before and after this discharge is no0l and no, respectively; it is easy

to verify that the average queue length is v0 . Hence, as a result of joining,

the total net benefits reaped during T amount to R-CTv . However, the

-le:ision to -oin at time t - 0 (and occupancy K = v -1) has further impli-.0 0
cations. It wi2l be convenient to represent them by an instantaneous expected

net gain rate g join(t;o -1). Since the net gain (R-CTv ) during the interval

(0,T) has already been separated out the function g.o(t;vo-1) takes on the
gjoin~t o-1

value 0 up to time T

i(t;Vo-1) - 0 (0 < t <.T) (43)

This property depends on the assumptions that customers arrive in a Poisson
stream at the station.
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Beyond T the function gjoin(t) takes a course which incorporates the

presently existing queue, the accumulation of new customers, the discharge of

serviced customers and the rewards gained by them. Clearly the instantaneous

expected net gain rate tends to G(v 0 ) as time t tends to infinity

t

The alternative decision to balk at time t = 0 brings forth another

instantaneous expected net gain rate gbalk(t; Vo-I). By virtue of the charac-

teristics stated before, joining the queue at time t = 0 generates a state

at time t = T which is identical with the stat." at time t = 0 brought about

by the balking decision. Hence the following must hold

g~1~t;v-) g (t.T; v -1) (5
S~~~~gbalk(t; 'o-1) = 9jointT;o-)45

and, of course, analogously to (44) we have

gbalk(t; Vo-l1) -+ G(vo0) (46)

t

What is the expected accumulated financial advantage A(t) at t

(conveniently assumed to exceed T) of balking over joining where we dis-

regard the terms R-C0 T which favored joining and were separated out. Clear:yo

A(t) is given by

t t t
A~t) =f gbalk(t')dt' g (t')dt' = f gbalk(t')dt' -

0 0 0

t t t-T
- T gJin(t')dt' f gbalk(t')dt' f gbalk(t)dt'
T 0oi0

t
f 5 gbalk(t')dt' (47)
t -T

When t tends to infinity the integrand on the right hand side of (47) tends

to the constant G(vo); hence the integral (47) - with t tending to infini:)

is evaluated as

I d m , . .
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A(-) = TG(v ) TG (48)

The gist of marginal analysis is that under conditions of optimality,

this advantage of balking over queueing (over an infinite horizon*) must equal

the advantage R-v 0 CT of joining over balking within the interval (0,T).

Therefore, we obtain

R- vCT = TG0  (49)

But equation (49) is essentially identical with (39). The other general

optimization formulas (38) and (4-) may be easily derived from (39). Hence by

using marginal analysis we have obtained the procedure for optimization without

the "messy" computational technicalities. For actual numerical work it is,

of course, still necessary to evaluate queue sizes and idle fractions through

the use of formulas (28)-(31).

Marginal analysis has led us one step beyond the original model under

investigation. The argument leading to (49) - and hence to (38) and (41) -

remains essentially valid even if the assumption of constant and equal service

times is modified. It is sufficient to assume that service times are distri-

buted (rather than fixed) and that the class of distributions is characterized

by the expected remaining service time of a customer being a strictly decreasing

and continuous function of elapsed service time. This is a rather mild restric-

tion. The minor modification that has to be introduced in the argumentation is

that the phrase "exactly after T time units" has to be replaced by "after T

time units on the average" whenever it appears. The salient point is the

following: whenever a situation exists such that a marginally joining customer

is made to produce average net gain in unit time during the ensuing T time

units, on the aveiage, equations (38), (39) and (41) must hold. We mention in

passing that, under conditions of social optimality a customer admitted to the

service station in a non-marginal fashion as it were generates net gain exceeding

the average.

* We observe that the interest rate is (implicitly) assumed to equal zero;
hence it does not make an appearance in the argument.
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Even if service times are distributed in a manner other than that pre-

scribed in the preceding paragraph, equations (38), (39) and (41) may remain

valid - at least in some approximative sense. Thus, for instance, let it be

assumed that the service times are exponentially distributed; this is the case

discussed in the previous study. Clearly the expected remaining service time

of a customer is a constant rather than a strictly decreasing function as post-

ulated before. Yet if in the equations representing the idle fraction and the

queue the integer n0  is replaced by the (close) real number v it can be

shown that relations (38) etc. are revalidated. At the danger of being repeti-

tious let it be restated that the analytical, as well as numerical, derivation

of the optimal p0 and q may be quite a difficult task.
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VI. Conclusion

The program of this investigation was threefold:

The first objective was to show that the decision rule of self-optimizing

customers operating within a framework of certainty and of equality (pertaining
to R, C and T) tends to overcongest a queueing system. This is the proper

meaning of inequality (40). The basic reason for the divergence between social

,ptimization and self-optimization - as expressed in inequality (40) - is the

fact that the individual customer need not consider the penalities he is (possiblyj

inflicting upon future customers by the very act of his joining the queue. The

toll levied on a marginally ;oining _;stomer could be considered to represent

compensation for damage, as it were, caused by the customer to future customers.

The second objective was to establish a vantage point for further gener-

alization. This has been attained by alternating ordinary maximization (that is:

carried out by differentiation) and marginal analysis. A set of formulas, simpie

and comprehensive - (38), (39) and (41) - has been shown to hold under conditions

more general than originally specified.

Thirdly, the stochastit- queueing model with non-integral capacity has been

developed and, possibly, this may be applicable in situations other than those

possessing an optimization rationale, The structure and form of associated

quantities - probabilities and expectations - may be quite interesting per se

and some potential industrial applications indicate the necessity for further

study

The general subject area of thi s5-dy possesses useful and interesing

extensions. Some further investigations are under way.
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